Vetores


 Compartilhar no facebook
 Compartilhar no twitter


Vetores

Grandezas Vetoriais
Grandezas físicas que não ficam totalmente determinadas com um valor e uma unidade são chamadas de grandezas vetoriais. As grandezas que ficam totalmente expressas por um valor e uma unidade são chamadas de grandezas escalares. Como exemplo de grandeza escalar temos a massa. Já as grandezas vetoriais, para que fiquem totalmente definidas necessitam de:

* Um Valor (módulo);
* Uma Unidade;
* Uma Direção;
* Um sentido.


Como exemplos de grandeza vetorial temos:
Velocidade, força, aceleração, etc.

Um vetor por sua vez tem três características: módulo, direção e sentido.

Para representar graficamente um vetor usamos um segmento de reta orientado.


O módulo do vetor, representa numericamente o comprimento de sua seta. No caso anterior, o módulo do vetor é igual a distância entre os pontos A e B, que por sua vez vale 3 u.

Para indicar vetores usamos as seguintes notações:


O módulo de um vetor é indicado utilizando-se duas barras verticais.

|A| (Lê-se: módulo de A)



Adição de Vetores
Podemos somar dois ou mais vetores, para obter um vetor soma.

Regra do polígono:
Ligam-se os vetores origem com extremidade. O vetor soma é o que tem origem na origem do 1º vetor e extremidade na extremidade do último vetor.




Subtração de Vetores
Para subtrair dois vetores adicionamos um deles ao oposto do outro.




Vetor x Número Real
O produto de um número real n por um vetor A, resulta em um vetor R com sentido igual ao de A se n for positivo ou sentido oposto ao de A se n for negativo. O módulo do vetor R é igual a n x |A|.




Decomposição de Vetores
A decomposição de vetores é usada para facilitar o cálculo do vetor resultante.


Seja um vetor R resultado da seguinte operação: R = A + B


Onde:
Rx = Ax + Bx

Ry = Ay + By





Saiba mais

Buscas relacionadas a Vetores em Física.


[ Pesquisa escolar lida 79911 Vezes - Categoria: Física ]


Sugestão de Busca Escolar

Sites

Encceja
Enem
SISU
Prouni
Paixão e Amor
Curiosidades
Relacionamento

Fale Conosco
Feed / RSS

Comunidade no Google +
Comunidade no Twitter


Novidades no seu e-mail

Estudantes Online
Sobre o Grupo Escolar

GrupoEscolar.com - Todos direitos reservados

Todo o conteúdo do site é retirado da internet e/ou enviado pelos estudantes.

Caso algum conteúdo infrinja direitos autorais entre em contato que adicionaremos crédito ou retiraremos o mesmo.

As opiniões expressas nos textos são de responsabilidade dos seus autores.

Somos apenas um veículo de comunicação e não compactuamos com nenhuma opinião sobre nenhum tema.