Triângulos Semelhantes


 Compartilhar no facebook
 Compartilhar no twitter


Triângulos Semelhantes

Podemos identificar na figura ao lado dois triângulos: um limitado pela reta amarela , que chamaremos de ABD, pois esses três pontos definem o triângulo; e outro maior que podemos chamar , pela mesma razão do primeiro, AFE. Se você mover os pontos A,B ou D verá que eles mantém as mesmas caracteristicas entre si: mesmo formato e proporção entre os tamanhos: neste caso cada lado do maior tem o dobro do tamanho do menor.

Triângulos podem ser semelhantes em três casos, se e somente se:
* LAL(lado, ângulo, lado) - possuem dois lados proporcionais - como na figura onde AE é duas vezes maior que AD e AF é duas vezes maior que AB : med(AE)=2*med(AD), med (AF)=2*med(AD). E esses lados devem formar um ângulo congruente - na figura , como os triângulos estão "um sobre o outro" o ângulo em A é o mesmo para os dois.

* AA(ângulo, ângulo) - possuem dois ângulos congruentes;

* LLL(lado, lado, lado) - possuem os três lados proporcionais.



Fonte: http://mathematikos.psico.ufrgs.br/disciplinas/ufrgs/mat010392k2/ens22k2/xyz/tricind.html





Saiba mais

Buscas relacionadas a Triângulos Semelhantes em Matemática.


[ Pesquisa escolar lida 40783 Vezes - Categoria: Matemática ]


Leia também! Assuntos relevantes.

Ângulo
Os ângulos são formados pela intersecção de dois raios, possuindo estes um ponto extremo em comum. A medida dos ângulos é expressa pela unidade grau (...
Lido: 20335 Vezes

Triângulo
O triângulo é uma forma geométrica composta por três retas que se encontram aos pares, formando três lados e três ângulos. Os pontos de encontro entre...
Lido: 9266 Vezes

Regra de Pitágoras para calcular o quadrado de um número
Sabemos que para calcular uma potência basta multiplicar a base o n.º de vezes do expoente, ou seja, por exemplo: 42=4x4=16. No entanto Pitágoras c...
Lido: 20640 Vezes

Sugestão de Busca Escolar

Sites

Encceja
Enem
SISU
Prouni
Paixão e Amor
Curiosidades
Relacionamento

Fale Conosco
Feed / RSS

Comunidade no Google +
Comunidade no Twitter


Novidades no seu e-mail

Estudantes Online
Sobre o Grupo Escolar

GrupoEscolar.com - Todos direitos reservados

Todo o conteúdo do site é retirado da internet e/ou enviado pelos estudantes.

Caso algum conteúdo infrinja direitos autorais entre em contato que adicionaremos crédito ou retiraremos o mesmo.

As opiniões expressas nos textos são de responsabilidade dos seus autores.

Somos apenas um veículo de comunicação e não compactuamos com nenhuma opinião sobre nenhum tema.