Carboidratos


 Compartilhar no facebook
 Compartilhar no twitter


Carboidratos

Por Prof. Ricardo Vieira

Os vegetais são auto-suficientes na produção de carboidratos. Os animais precisam alimentar-se de células vegetais (ou de animais herbívoros) para obter glicose e O2 para produzir energia para suas reações metabólicas.

Prof. Ricardo Vieira

ESTRUTURA E FUNÇÕES

INTRODUÇÃO
Os carboidratos (também chamados sacarídeos, glicídios, oses, hidratos de carbono ou açúcares), são definidos, quimicamente, como poli-hidróxi-cetonas (cetoses) hidróxi-aldeídos (aldoses)ou poli- , ou seja, compostos orgânicos com, pelo menos três carbonos onde todos os carbonos possuem uma hidroxila, com exceção de um, que possui a carbonila primária (grupamento aldeídico) ou a carbonila secundária (grupamento cetônico).

Possuem fórmula empírica Cn(H2O)m desde os mais simples (os monossacarídeos, onde n = m) até os maiores (com peso molecular de até milhões de daltons). Alguns carboidratos, entretanto, possuem em sua estrutura nitrogênio, fósforo ou enxofre não se adequando, portanto, à fórmula geral.

A grande informação embutida por detrás desta fórmula geral é a origem fotossintéticos dos carboidratos nos vegetais, podendo-se dizer que os carboidratos contém na intimidade de sua molécula a água, o CO2 e a energia luminosa que foram utilizados em sua síntese. A conversão da energia luminosa em energia química faz com que esses compostos fotossintetizados funcionem como um verdadeiro combustível celular, liberando uma grande quantidade de energia térmica quando quebrada as ligações dos carbonos de suas moléculas, liberando, também, a água e o CO2 que lá se encontravam ligados.

A relação entre a fotossíntese e a função energética dos carboidratos é indiscutível. De fato, a clorofila presente nas células vegetais é a única molécula da natureza que não emite energia em forma de calor após ter tido seus elétrons excitados pela luz: ela utiliza esta energia para unir átomos de carbono do CO2 absorvido, "armazenando-a" nas moléculas de glicose sintetizadas neste processo fotossintético.



Os animais não são capazes de sintetizar carboidratos a partir de substratos simples não energéticos, precisando obtê-los através da alimentação, produzindo CO2 (excretado para a atmosfera), água e energia (utilizados nas reações intracelulares).

Nos animais, há um processo chamado neoglicogênese que corresponde a uma síntese de glicose a partir de percursores não glicídicos. Um outro processo de síntese endógena de glicose se dá através da glicogenólise do glicogênio sintetizado no fígado e músculos (glicogênese). Esses processos, entretanto, só são possíveis a partir de substratos provenientes de um prévio metabolismo glicídico, o que obriga a obtenção de carboidratos pela alimentação, fato que torna os animais dependentes dos vegetais em termos de obtenção de energia.

A energia térmica contida na molécula de glicose é liberada nas mitocôndrias e, por fim, convertida em ligações altamente energéticas de fosfato na molécula de ATP (adenosina tri-fosfato) durante o processo de respiração celular (fosforilação oxidativa). As duas primeiras ligações liberam alta energia (± 10 Kcal) quando quebradas, ao contrário da primeira que possui baixa energia de ligação em relação às primeiras (± 6 Kcal). Note que o ATP corresponte, então, a um verdadeiro armazém da energia solar que foi conservada durante todo esse fantástico processo biológico.


FUNÇÕES
* ENERGÉTICA: são os principais produtores de energia sob a forma de ATP, cujas ligações ricas em energia (±10 Kcal) são quebradas sempre que as células precisamde energia para as reações bioquímicas. É a principal função dos carboidratos, com todos os seres vivos (com exceção dos vírus) possuindo metabolismo adaptado ao consumo de glicose como substrato energético. Algumas bactérias consumem dissacarídeos (p.ex.: a lactose) na ausência de glicose, porém a maioria dos seres vivos a utiliza como principal fonte energética.

* ESTRUTURAL: a parede celular dos vegetais é constituída por um carboidrato polimerizado - a celulose; a carapaça dos insetos contém quitina, um polímero que dá resistência extrema ao exo-esqueleto; as células animais possuem uma série de carboidratos circundando a membrana plasmática que dão especificidade celular, estimulando a permanência agregada das células de um tecido - o glicocálix.

* RESERVA ENERGÉTICA: nos vegetais, há o amido, polímero de glicose; nos animais, há o glicogênio, também polímero de glicose porém com uma estrutura mais compacta e ramificada.



CLASSIFICAÇÃO
Os carboidratos mais simples são denominados monossacarídeos, possuindo pelo menos um átomo de carbono assimétrico que caracteriza a região denominada centro quiral, pois fornece isômeros ópticos. Possuem de 3 a 8 carbonos, sendo denominado, respectivamente, trioses, tetroses, pentoses, hexoses, heptoses e octoses.

Os monossacarídeos de ocorrência natural mais comum, como a ribose (5C), glicose (6C), frutose (6C) e manose (6C), existem como hemiacetais de cadeia cíclica (e não na forma linear), quer na formas de furanose (um anel de 5 elementos, menos estável) ou de piranose (um anel de 6 elementos, mais estável).

Esta forma cíclica (hemiacetal), resulta da reação intramolecular entre o grupamento funcional (C1 nas aldoses e C2 nas cetoses) e um dos carbonos hidroxilados do restante da molécula (C4 na furanose e C5 na piranose), ocorrendo nas formas isoméricas a e b (cis ou trans), conforme a posição da hidroxila do C2 em relação à hidroxila do C1. Tais formas são interconvertidas através do fenômeno da mutarrotação.

Os carboidratos formam compostos pela união de duas ou mais moléculas de monossacarídeos, sendo classificados como DISSACARÍDEOS, OLIGOSSACARÍDEOS e POLISSACARÍDEOS. Nesses compostos, quando o carbono C1 apresenta a hidroxila livre (ou seja, não está formando ligação entre os monossacarídeos) o carboidrato apresenta poder redutor quando aquecido. Esta característica é utilizada, freqüentemente, em reações de identificação.



METABOLISMO DOS CARBOIDRATOS
Após a absorção dos carboidratos nos intestinos, a veia porta hepática fornece ao fígado uma quantidade enorme de glicose que vai ser liberada para o sangue e suprir as necessidades energéticas de todas as células do organismo.

As concentrações normais de glicose plasmática (glicemia) situam-se em torno de 70 - 110 mg/dl, sendo que situações de hipergicemia tornam o sangue concentrado alterando os mecanismos de troca da água do LIC com o LEC, além de ter efeitos degenerativos no SNC. Sendo assim, um sistema hormonal apurado entra em ação para evitar que o aporte sangüíneo de glicose exceda os limites de normalidade.

Os hormônios pancreáticos insulina e glucagon possuem ação regulatória sobre a glicemia plasmática. Não são os únicos envolvidos no metabolismo dos carboidratos (os hormônios sexuais, epinefrina, glicocorticóides, tireoidianos, GH e outros também têm influenciam a glicemia), porém, sem dúvida, são os mais importantes.

A insulina é produzida nas células b das ilhotas de Langerhans e é armazenada em vesículas do Aparelho e Golgi em uma forma inativa (pró-insulina). Nessas células existem receptores celulares que detectam níveis de glicose plasmáticas (hiperglicemia) após uma alimentação rica em carboidratos. Há a ativação da insulina com a retirada do peptídeo C de ligação, com a liberação da insulina na circulação sangüínea. Como efeito imediato, a insulina possui três efeitos principais:
1. Estimula a captação de glicose pelas células (com exceção dos neurônios e hepatócitos);

2. Estimula o armazenamento de glicogênio hepático e muscular (glicogênese); e

3. Estimula o armazenamento de aminoácidos (fígado e músculos) e ácidos graxos (adipócitos).



Como resultado dessas ações, há a queda gradual da glicemia (hipoglicemia) que estimula as células a-pancreáticas a liberar o glucagon. Este hormônio possui ação antagônica à insulina, com três efeitos básicos:
1. Estimula a mobilização dos depósitos de aminoácidos e ácidos graxos;

2. Estimula a glicogenólise

3. Estimula a neoglicogênse.


Esses efeitos hiperglicemiantes possibilitam nova ação insulínica, o que deixa a glicemia de um indivíduo normal em torno dos níveis normais de 70 - 110 mg/dl .

A captação de glicose pela célula se dá pelo encaixe da insulina com o receptor celular para insulina. Esse complexo sofre endocitose, permitindo a entrada de glicose, eletrólitos e água para a célula; a glicose é metabolizada (através da glicólise e Ciclo de Krebs), a insulina degradada por enzimas intracelulares e o receptor é regenerado, reiniciando o processo.

Quanto mais complexo insulina/receptor é endocitado, mais glicose entra na célula, até que o plasma fique hipoglicêmico. Esta hipoglicemia, entretanto, não é imediata, pois a regeneração do receptor é limitante da entrada de glicose na célula, de forma a possibilitar somente a quantidade de glicose necessária evitando, assim, o excesso glicose intracelular.

Nos músculos, a glicose em excesso é convertida em glicogênio, assim como a glicose que retorna ao fígado.

A grande maioria das células do organismo são dependentes da insulina para captar glicose (o neurônio e os hepatócitos são exceções, pois não tem receptores para insulina, sendo a glicose absorvidos por difusão).

A deficiência na produção ou ausência total de insulina ou dos receptores caracteriza uma das doenças metabólicas mais comuns: o diabetes mellitus.


Representação esquemática da captação de glicose. A) a insulina é liberada pelo estímulo hiperglicêmico e forma um complexo insulina/receptor. B) a célula endocita o complexo e possibilita a entrada de glicose para ser metabolizada. C) O receptor é regenerado, a insulina degradada intracelularmente e o processo reinicia levando a queda da glicemia plasmática.


Fonte:
http://www.profcupido.hpg.ig.com.br/bioquimicacarboidratos.htm





Saiba mais

Buscas relacionadas a Carboidratos em Biologia.


[ Pesquisa escolar lida 45263 Vezes - Categoria: Biologia ]


Sugestão de Busca Escolar

Sites

Encceja
Enem
SISU
Prouni
Paixão e Amor
Curiosidades
Relacionamento

Fale Conosco
Feed / RSS

Comunidade no Google +
Comunidade no Twitter


Novidades no seu e-mail

Estudantes Online
Sobre o Grupo Escolar

GrupoEscolar.com - Todos direitos reservados

Todo o conteúdo do site é retirado da internet e/ou enviado pelos estudantes.

Caso algum conteúdo infrinja direitos autorais entre em contato que adicionaremos crédito ou retiraremos o mesmo.

As opiniões expressas nos textos são de responsabilidade dos seus autores.

Somos apenas um veículo de comunicação e não compactuamos com nenhuma opinião sobre nenhum tema.